

Arbeitsheft

Experimente mit PV-Zellen

Jahrgangsstufen 8 & 9

Physik

Erste Ausgabe, Mai 2023 Zweite Ausgabe, Oktober 2024 Dritte Ausgabe, März 2025 Redaktion: Iason Saganas Lektorat: Matthias Schmuderer

Gestaltung / Layout: Elisa Mutz, Carina Lützenburger, Lou von Dewitz

© Solar Bildung, 2024 www.solarbildung.org Solar for Schools Bildung gGmbH Steinstr. 39, Rgb. rechts D-81667 München

kontakt@solarbildung.org

Rechtliche Hinweise:

Alle Inhalte dieser Publikation, einschließlich Texte, Bilder und Grafiken, sind urheberrechtlich geschützt und dürfen ohne schriftliche Genehmigung des Herausgebers nicht vervielfältigt oder verbreitet werden (außer im Unterricht). Diese Publikation dient ausschließlich zu Lernszwecken, und der Herausgeber übernimmt keine Garantie für die vollständige Richtigkeit.

Lektion: Experimente mit PV-Zellen

Inhalt	
00 Vorbereitung: Stromkreise mit PV-Modulen	4
01 Experiment: Leistungskurve einer PV-Anlage	7
02 Experiment: Reihen- & Parallelschaltung	13
03 Experiment: Maximum-Power-Point	19
04 Experiment: Wirkungsgrad	24
05 Zusatz 1: Realitätsgetreue Einstellung des Moduls	30
06 Zusatz 2: Verschaltung von PV-Modulen einer Anlage	30

Name:	Datum:

00 Vorbereitung: Stromkreise mit PV-Modulen

Lernziel

Erarbeiten von relevanten Konzepten & richtigen Messtechniken. Exkurs in den Hintergrund der Experimente.

Vorüberlegungen

Die Photovoltaik ist ein wesentlicher Baustein erneuerbarer Energien weltweit. Mit ihr lässt sich das Sonnenlicht als elektromagnetische Strahlung direkt in elektrische Energie umwandeln. Der Wirkungsgrad, also das Verhältnis aus eingestrahlter Lichtleistung und der umgesetzten elektrischen Energie ist dabei diejenige Variable, die es zu optimieren gilt (Beinhaltet in Experiment 4). Auf den Wirkungsgrad haben viele Faktoren Einfluss, wie der Einstrahlwinkel der Lichtquelle (Experiment 1), die Verschattung der Photovoltaik-Module durch Wolken, Bäume, Schnee oder Schmutz (Teilversuch in Experiment 2), die Temperatur der PV-Module, aber auch die Qualität des eingesetzten Halbleitermaterials. Entscheidend ist auch der Widerstandswert des angehängten Verbrauchers, genannt der "externe Lastwiderstand". Die *U-I-*Charakteristik eines PV-Moduls ist nicht linear. Bei näherer Betrachtung ergibt sich daraus, dass es einen optimalen Widerstandswert gibt, unter dem das Modul seine maximale Leistung abgibt (Experiment 3). Es existiert aufwendige Elektronik, die diesen optimalen Betriebspunkt ständig überwacht und je nach der momentanen Einstrahlstärke nachjustieren muss ("MPP-Tracker").

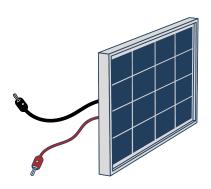


Abb: Ein Photovoltaik-Experimentier-Modul

Schaltelemente

Verbraucher (Lämpchen, Motor, etc.)

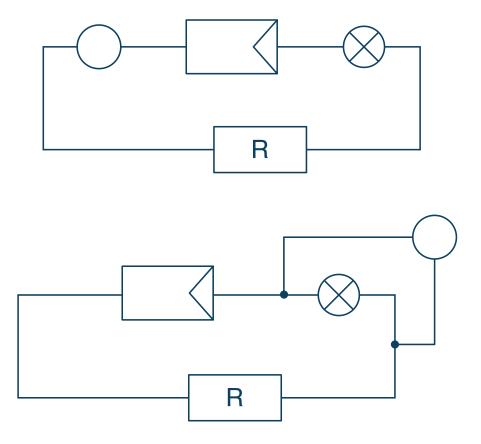


Linearer Widerstand

und

Strom-Spannungsmessgeräte

PV-Modul


100kΩ-Potentiometer

Begriffserklärung: Potentiometer

Ein Potentiometer ist ein passives elektrisches Bauelement (also ein Verbraucher). Es verfügt über einen Drehknopf, mithilfe dessen sich ein bestimmter Widerstandswert aus einem kontinuierlichem Widerstandsbereich einstellen lässt.

Messtechnik: Theorie

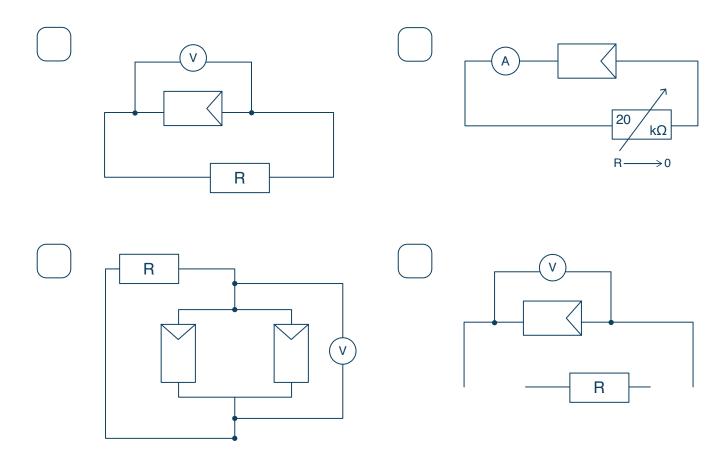
Welches Messgerät ist auf den Abbildungen dargestellt? Beschrifte die leeren Kreise mit A für eine Amperemeter und mit V für ein Voltmeter

Wenn man von "Spannung" in einem Schaltkreis redet, so muss man in der Praxis genauer erläutern, von welcher Spannung die Rede ist: Greift man mit einem Multimeter die Spannung eines oder mehrerer elektrischen Geräte ab, so spricht man von der **Klemmenspannung** dieser Bauteile.

Vergleicht man in einem Schaltkreis die Klemmenspannung von elektrischen Verbrauchern (Widerstand, Lämpchen, Motor etc.) mit der Klemmenspannung von Energiequellen (Batterie, Photovoltaik- Modul, Netzgerät etc.), so ist ein wesentlicher Unterschied der Folgende: Die Klemmenspannungen unterscheiden sich per Konvention im Vorzeichen. Beispiel: Sei die Klemmenspannung an einem PV-Modul +9V. An einem gewissen Widerstand in der Schaltung wurde eine Klemmenspannung von –3V gemessen.

Die **Gesamtspannung** bezeichnet die Klemmenspannung aller Energiequellen oder aller Verbraucher. Formelzeichen: U_{des} .

Die **Leerlaufspannung** eines PV-Moduls bezeichnet die Klemmenspannung des PV-Moduls bei nicht geschlossenem Stromkreis. Formelzeichen: U_{\parallel} .


Der **Kurzschluss-Strom** eines PV-Moduls ist diejenige Stromstärke, die man misst, wenn kein externer Widerstand in der Schaltung eingebaut ist (PV-Module sind kurschluss-sicher!). Formelzeichen: *I*_{ke}.

Name:	Datum:	

Aufgabe 1

Ordne nun den unten abgebildeten Schaltungen die richtigen Bezeichnungen zu.

- a) Klemmenspannung eines PV-Moduls
- b) Messung der Leerlaufspannung
- c) Messung des Kurzschluss-Stroms
- d) Klemmenspannung zweier parallel-geschalteter PV-Module

Messtechnik: Praxis

Anleitung zur Messung mit dem Multimeter:

- Unabhängig davon, ob Spannung oder Strom gemessen werden soll, muss ein Kabel immer in der Common-Buchse "COM" stecken
 - 1.1 Möchte man Spannung messen, so steckt man das zweite Kabel in die Volt-Buchse "V"
 - 1.2 Möchte man Strom messen, so steckt man das zweite Kabel in die Ampère-Buchse. Bei vielen Multimetern gibt es getrennte Buchsen, abhängig von der *Größenordnung* der Strom messung: "A" für den einstelligen und zweistelligen Amperebereich und "mA μ A" für Mes sungen im Bereich von Milli- und Mikroampere.
- 2. Schließlich ist das Drehrad des Multimeters auf die richtige Größenordnung zu stellen

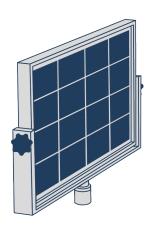
Zu Punkt 2: Wenn das Multimeter richtig angeschlossen und die Schaltung korrekt aufgebaut ist, das Display jedoch "**0L**" zeigt (Anzeige mag je nach Typ des Multimeters variieren, heißt ca. "zu viel Strom / Spannung), so sollte eine Größenordnung höher eingestellt werden. Man steigere so lange die Größenordnungen, bis die Anzeige **0L** verschwindet. Das heißt, die richtige Größenordnung ist die kleinste, die sinnvoll angezeigt wird.

01 Experiment: Leistungskurve einer PV-Anlage

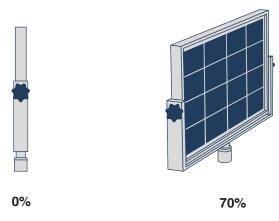
Lernziel

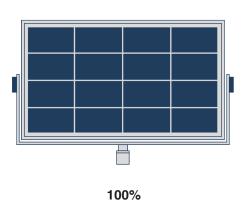
Die Form des Tagesverlauf einer PV-Leistungskurve zu verschiedenen Jahreszeiten (Sommer, Winter, Frühling/Herbst) wird nachgezeichnet. Es soll verstanden werden, wie dieser Verlauf, in Anbetracht der Sonnenlaufbahn und der optimalen Einstrahlwinkel auf das PV-Modul, entsteht.

Kurzbeschreibung

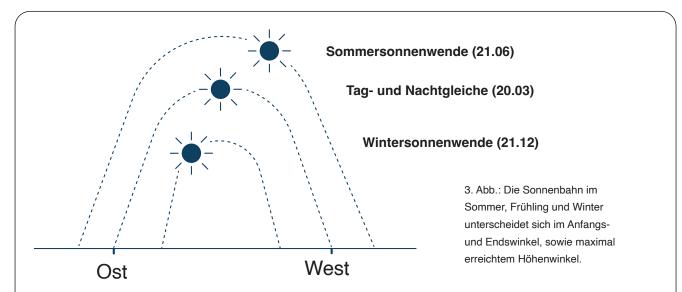

Es wird der Effekt zweier Einstrahlwinkel β und γ (Umlaufwinkel der Sonne und Neigungswinkel des PV-Moduls) auf die Stromstärke des Moduls untersucht. Es sollen die Winkel ermittelt werden, unter denen das Modul die größte Stromstärke (indirekter Indikator für die Leistung) abgibt.

Vorüberlegungen

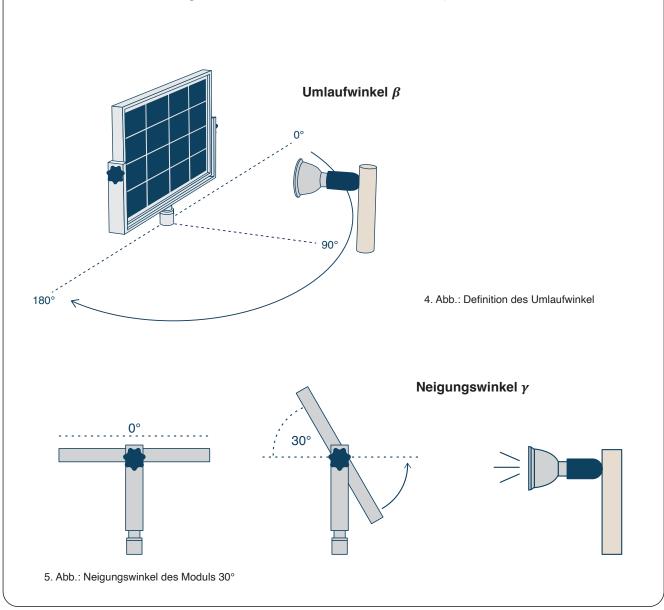

Ein PV-Modul wandelt Lichtenergie in elektrische Energie um. Je nach Einstrahlwinkel ändert sich die Einstrahlungsleistung auf das PV-Modul. Neigt man ein Modul, so ändert sich die effektiv bestrahlte Fläche: Siehe Abbildung 2.


PV-Anlagen sind üblicherweise in einer festen Position montiert. Der Winkel der Sonne auf die PV-Module ändert sich jedoch sowohl über den Tag als auch über das Jahr hinweg.

Die Erdachse ist durch ihre Neigung so ausgerichtet, dass die Nordhalbkugel im Sommer der Sonne zugewandt ist und im Winter der Sonne abgeneigt ist. Aufgrund der Erdrotation und ihrer Neigung, sehen wir, von der Erde aus gesehen, dass die Sonne eine Bahn von Osten nach Westen durchläuft. Je nach Jahreszeit verändert sich der Anfang und das Ende dieser Bahn, als auch ihr Höhepunkt: Siehe Abbildung 3.



1. Abb: Zu benutzendes Modul



2. Abb.: Veranschaulichung der effektiv bestrahlten Fläche bei Variation des Umlaufwinkels.

Im Versuch wird der Verlauf der Sonne von Ost nach West mit der Bewegung der Lampe in einem Kreis um das Modul dargestellt. Diesen Winkel nennen wir Umlaufwinkel β . Der Neigungswinkel des Moduls kann mit der Winkelschablone eingestellt werden. Diesen Winkel nennen wir γ .

Optimaler Einstrahlwinkel (Qualitativ)

Bringe das Modul auf die Basisplatte an
Stelle die LED-Lampe auf die markierte Stelle an der Platte
Verbinde das Kästchen mit den LED-Lämpchen, den Verbraucher, mit dem Modul. Je mehr Strom fließt, umso mehr Lämpchen leuchten auf.
Untersuche den Neigungswinkel γ: Neige das PV-Modul von 0° bis 180° (siehe Abbildung 5). Bei welchem Einstrahlwinkel leuchten die wenigsten, bei welchem die meisten Lämpchen? Untersuche den Umlaufwinkel β: Gehe mit der Lampe von 0° auf der einen Seite zu 180° auf der anderen Seite (siehe Abbildung 4 und an der Winkel-Rosette in der Grundplatte). Bei

Teilversuch 02

Simulation der Leistungskurve (Quantitativ)

welchem sind sie am stärksten?

welchem Einstrahlwinkel gehen die meisten Lämpchen an? Bei

- Bevor du weitermachst, lese dir die Anleitung "Experiment 1: Realitätsgetreue Einstellung des Moduls" durch
- Verbinden nun die Lampe mit dem Modul durch die Schnur: Nimm das Modul ab und lege die Schlaufe um den Fuß des Moduls. Stecke das Modul wieder in die Halterung
- Nimm die Winkelschablone und bringe sie an, indem du die Schraube an der Seite des Moduls entfernst und die Mitte des Winkelmessers auf die nun sichtbare Achse steckst und schraube sie fest
- Stelle die Neigung der PV-Anlage deines Schuldachs ein (alternativ: 30°). Richte das PV-Modul analog zur Himmelsausrichtung Eurer eigenen Schul-PV-Anlage aus (alternativ: nach Sünden)
- Beginne mit der Sommersimulation und korrigiere dementsprechend die Neigung. Siehe an der Winkel-Rosette an der Platte, wo deine Drehung um das Modul beginnen und enden muss
- Verbinde das Modul mit dem Multimeter und schalte es auf Stromstärke-Messung
- Variiere nun den Umlaufwinkel in sinnvollen Schritten indem du die Lampe in einem Halbkreis um das Modul bewegst
- Messe den Winkel indem du ihn an der Winkel-Rosette an der Grundplatte abliest. Die Schnur hilft dir dabei deine Sichtlinie zu verlängern
- Notiere dir in Tabelle 1 deine Kurzschluss-Stromwerte
- Wiederhole nun die Messung für Winter und Frühling: Stelle die ursprüngliche Neigung des Moduls her und wende die α_{\max} Korrektur für Winter oder Frühling an. Achte darauf, dass die Lampendrehung im Winter später anfängt und früher aufhört (siehe Markierungen an der Winkel-Rosette der Grundplatte)

lame:			Datum:		
Tabelle 1	(urzschluss-S	trom: Simul	ation der Leis	tungskurve	im Somme
β in ° (I)	I _{ks} in mA (I)	β in ° (II)	I _{ks} in mA (III)	β in ° (III)	I _{ks} in mA (III
abelle 2 K	(urzschluss-S	trom: Simul	ation der Leis	tungskurve	im Winter
β in ° (I)	I _{ks} in mA (I)	β in ° (II)	I _{ks} in mA (III)	β in ° (III)	I _{ks} in mA (II

Tabelle 3 Kurzschluss-Strom: Simulation der Leistungskurve im Frühling

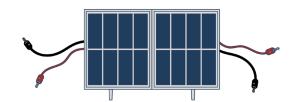
I _{ks} in mA (I)	β in ° (II)	I _{ks} in mA (III)	β in ° (III)	I _{ks} in mA (III)
	I _{ks} in mA (I)	I _{ks} in mA (I) β in ° (II)	I_{ks} in mA (I) β in $^{\circ}$ (II) I_{ks} in mA (III)	

Name:	Datum:
Auswertung 03	
Optimaler Einstrahlwinkel u	nd Kurvenverdleich
die y-Achse	om gegen den Winkel auf, wähle dafür einen geeigneten Maßstab für Vas ist also der optimale Winkel $\beta_{\rm opt}$? Stimmt dies mit Teilversuch 1
überein?	Erwartungen, was die Größe der Kurven im Vergleich untereinander
	rwartungen, was den Beginn und das Ende der Einstrahlzeit angeht?

02 Experiment: Reihen- und Parallelschaltung

Lernziel

Es sollen die Kirchhoff'schen Maschen- und Knotenregeln bestätigt werden und eine optimale Verschaltung von PV-Modulen auf dem Dach von Gebäuden abgeleitet werden.

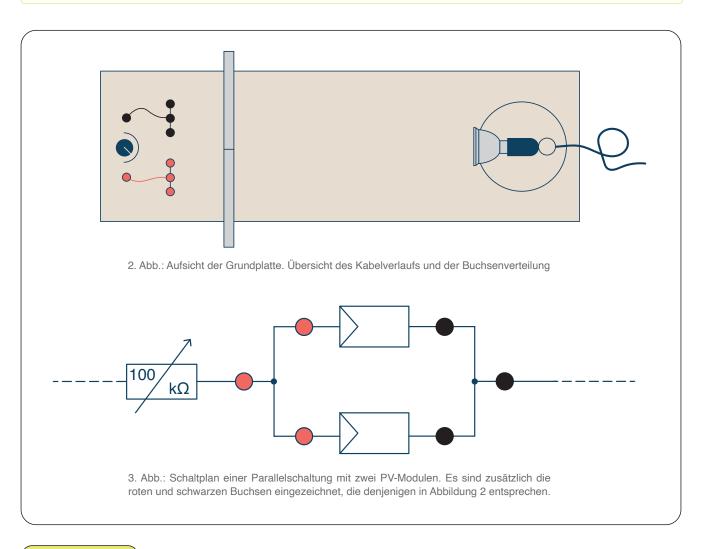

Aus den Kirchhoff'schen Regeln folgt: **In Reihe** addieren sich die Klemmenspannungen der Module. Die Stromstärke bleibt dagegen in jedem Abschnitt konstant. **Parallel** addieren sich die Stromstärken, die Klemmenspannungen bleiben dagegen in jedem Abschnitt konstant.

Kurzbeschreibung

Es wird eine Reihen- und Parallelschaltung aufgebaut, jeweils bestehend aus zwei PV-Modulen. Zusätzlich soll der Effekt von Beschattung auf den Modulen untersucht werden.

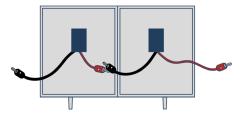
Vorüberlegungen

PV-Anlagen sind ganzjährig Umwelteinflüssen wie Regen, Schnee und Schmutz ausgesetzt. Diese verhindern, ebenso wie der Schatten von Bauwerken und Bäumen, dass direkte Sonneneinstrahlung auf PV- Module trifft. Wie wichtig es ist, Verschattung bei der Auslegung von PV-Anlagen zu beachten und was für einen Effekt diese auf Reihen- und Parallelschaltung hat, soll in diesem Experiment gezeigt werden.


1. Abb.: Zu benutzende Module

- Misst du in den Versuchen V— oder V~? A oder A ~ ? Kreise ein
- Achte darauf, innerhalb jedes Teilversuchs, den Widerstand, die Lichtverhältnisse und die Distanz zur Lichtquelle konstant zu halten

Tipps:


- Modulkabel direkt über Löcher in den Steckern miteinander verbinden
- Reihenschaltung: Plus- und Minuspole der Module aneinanderreihen (Schwarz auf Rot auf Schwarz etc.)
- Parallelschaltung: Alle Minuspole (Schwarz) zusammenlegen und alle Pluspole (Rot) zusammenlegen
- Für die Bemessung der Parallelschaltung mit dem Multimeter werden alle Stecker einer Farbe in die gleichfarbigen Buchsen der Grundplatte gesteckt. Die roten und schwarzen Buchsen sind jeweils leitend miteinander verbunden. Das Potentiometer kann dann mit diesen mittels zwei zusätzlicher Laborkabel (siehe Abbildung 2) verbunden werden.

Reihenschaltung

- Für diesen Versuch lassen sich die Module direkt miteinander verbinden, siehe Abbildung 4
- Verbinde nun das $100 \text{k}\Omega$ Potentiometer, um die Schaltung in Abbildung 5 zu realisieren

4. Abb.: Die Kabel der PV- Module können direkt zusammengesteckt werden

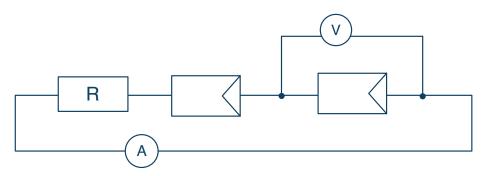


Abb.: Schaltplan einer Reihenschaltung bestehend aus zwei PV-Modulen.
 Als Widerstand muss der kritische Widerstand eingestellt werden.

Als Widerstandswert muss der sogenannte *kritische Widerstand* eingestellt werden. Als kritischen Widerstand bezeichnen wir die Last, unter welcher die Leistung eines Moduls kurz davor ist, einzubrechen. Geht man unter diesen Widerstand, brechen die Spannungswerte ein. Geht man über diesen Widerstand, brechen die Stromwerte ein.

Gehe wie folgt vor:

- · Stelle die Lampe auf die Sonnenposition und schalte sie an
- Um den kritischen Widerstand zu finden: Drehe das Potentiometer von R_{max} → 0 und beobachte die grünen Kontroll-Lämpchen an dem Rücken der Module. Es gibt einen Schwellwert R_{crit}, bei dem beide Lämpchen gerade noch gleichzeitig leuchten (dreht man also das Potentiometer ein bisschen weiter, würde eines der Lämpchen ausgehen)
- Messe nun die Klemmenspannung beider Module einzeln und trage in Tabelle 1 ein
- Bilde die Summe der einzelnen Klemmenspannungen und trage in Tabelle 2 ein
- Miss die Gesamtspannung (also z.B. die Klemmenspannung des Potentiometers) und trage in Tabelle
 1 ein. Sind deine Erwartungen erfüllt?

Tabelle 1

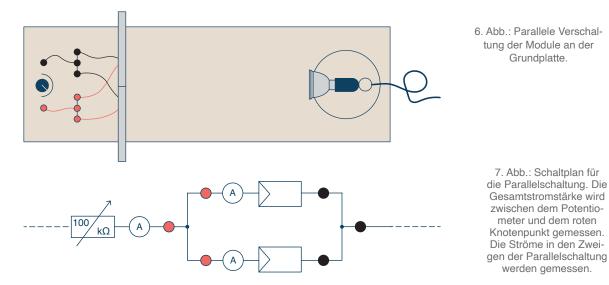
Spannungen in einer Reihenschaltung

	Klemmenspannung in ${\mathcal V}$	Summe der Klemmenspannungen in ${\mathcal V}$	Gesamtspannung in $\mathcal V$	Erwartung erfüllt?
PV1				
PV2				

- Messe nun die Stromstärke zwischen den Modulen. Trage in Tabelle 2 ein
- Messe die Stromstärke zwischen dem Potentiometer und einem der Module. Trage in Tabelle 2 ein
- · Sind deine Erwartungen erfüllt?

Tabelle 2

Stromstärken in einer Reihenschaltung


	Stromstärke in mA	Erwartung erfüllt?
Zwischen den Modulen		
Zwischen dem Potentiometer und einem der Module		

Name:	Da	tum:		
 Verdecke nun eines der Module komplett, z.B. mit einem Stück Karton oder einem Heft. Was passiert mit der Gesamtspannung und dem Strom? Messe und trage die Werte in Tabelle 3 ein Verdecke nun gleichzeitig die beiden oberen Hälften der Module und trage die Werte für Gesamtspannung und Strom wieder in Tabelle 3 ein Schalte die Lampe aus Verwundern dich deine Ergebnisse? Kannst du die Werte in Tabelle 3 erklären? 				
Effekt von Verschattung a	auf Gesamtspannung Stromstärke in mA	& Strom in Reihenschaltung Gesamtspannung in V		
Komplette Verschattung eines der Module				
Verschattung der oberen beiden Hälften der Module				

Parallelschaltung

- Um nun eine Parallelschaltung zu realisieren, stecke die roten Modulkabel in die roten Buchsen an der Grundplatte und die schwarzen Modulkabel in die schwarzen Buchsen, wie in Abbildung 6
- · Verbinde das Potentiometer wie in Abbildung 2
- Schalte nun die Lampe wieder ein
- Benutze das bekannte Verfahren um am Potentiometer den kritischen Widerstand R_{crit} einzustellen Zu Erinnerung: In einer Parallelschaltung gilt, dass die Klemmenspannung eines einzelnen Moduls der Gesamtspannung im Stromkreis entspricht. Außerdem entspricht die Summe der Stromstärken in den Abzweigungen der Gesamtstromstärke. Die Gesamtstromstärke befindet sich z.B. zwischen dem Potentiometer und dem roten oder schwarzen Knotenpunkt in der Grundplatte.

Dies ist nun hier nachzuweisen.

- · Messe zunächst die Klemmenspannung beider Module und trage die Werte in Tabelle 4 ein
- Messe nun die Gesamtspannung in dem du die Klemmenspannung vom Potentiometer misst. Trage in Tabelle 4 ein. Sind deine Erwartungen erfüllt?

Tabelle 4

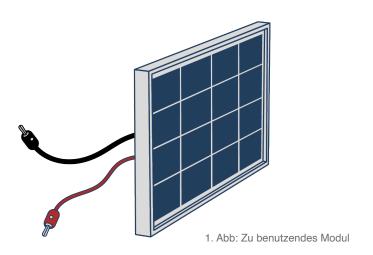
Spannungen in einer Parallelschaltung

	PV1	PV2	Potentiometer
Klemmenspannung in V von			
Erwartung erfüllt?			

	Datum:				
Trage diese • Messe nun	Werte, als auch derer	n Summe in Tabelle 5	weig der Parallelschaltun 5 ein 6) und trage den Werte		
Tabelle 5					
Stromstärker	n in einer Parall	elschaltung			
	Stromstärke in mA	Summe in mA	Gesamtstrom in mA	Erwartung erfüllt?	
Zweig 1					
Zweig 2					
	ng eines Zweiges der P	-			
Tabelle 6	oschluss-Fazit im Arbei		Abschluss-Aufgabe" ung & Strom in P	arallelschaltung	
Tabelle 6			ung & Strom in P	Parallelschaltung	
Tabelle 6	erschattung auf	Gesamtspann	ung & Strom in P		

03 Experiment: Maximum-Power-Point

Lernziel


Es soll die *U-I-*Charakteristik und die *U-P-*Charakteristik eines PV-Moduls gezeichnet werden. Dadurch soll der maximale Leistungspunkt, also der optimale Betriebspunkt des PV-Moduls, der "MPP" bestimmt werden.

Kurzbeschreibung

Es wird eine einfache Schaltung mittels PV-Modul und zwei 220Ω Potentiometern aufgebaut. Unter Variation des anliegenden Gesamtwiderstands wird zeitgleich die Änderung in Spannung und Stromstärke notiert. Die (U, I) Daten werden in ein Diagramm eingetragen und durch Multiplikation der Spannungswerte mit den Werten der Stromstärke wird ein U-P-Graph gezeichnet, dessen Maximum bestimmt wird.

Vorüberlegungen

Die *U-I*-Kennlinie eines Ohm'schen Widerstands lässt sich wie folgt bestimmen: Man schließe einen Widerstand an ein Netzgerät an und variiert die Spannung am Netzgerät die in den Stromkreis eingespeist wird. Die Spannung dient als Variable, deren Auswirkung an der Stromstärke im Schaltkreis beobachtet wird. Da der Widerstand konstant ist, stellt sich der Strom nach dem Ohm'schen Gesetz so ein, dass *U/I* konstant ist. Es ergibt sich eine Gerade im *U-I*-Diagramm, aus derer Steigung sich der Widerstand bestimmen lässt.

Konzept des Versuchs

Was in diesem Versuch gemacht wird, weicht von dem zuvor beschriebenen Vorgehen ab: Der Widerstand wird **nicht** konstant gehalten, sondern mittels des Potentiometers variiert. Nun wird untersucht, wie sich Strom und Spannung des PV-Moduls aufgrund der Variation des Widerstands ändern. Auf diese Weise wird die Energiequelle des Stromkreises analysiert, also das PV-Modul und nicht die Verbraucher.

Man wird sehen: Die U-P-Kurve hat ein eindeutiges **Maximum**. Es gibt also einen optimalen Widerstand, bei dem die Solarzelle maximale Leistung abgibt. Dieser Punkt maximaler Leistung nennt sich Maximum-Power-Point. Die Spannung, die bei diesem Punkt anliegt, ist die MPP-Spannung.

Name:	Datum:

Verbraucher

- Stecke das Modul in seine Befestigung und bringe die Halogenlampe auf der gegenüberliegenden Seite so zentriert wie möglich an
- Schalte eines der 220Ω Potentiometer in Reihe zum PV-Modul und bringe es auf die maximale Stellung, also auf 220Ω .
- Schalte den Motor mit Propeller parallel zum Potentiometer (Abb. 2). Benutze dafür die Löcher in den Spitzen der Modulkabel zum Einstecken
- Schalte die Lampe und verändere ihre Lage (Distanz zum Modul und Einstrahlwinkel) so, dass der Propeller anfängt sich zu drehen (manchmal braucht der Propeller einen "Stupser" um anzulaufen)
- Drehe nun am Potentiometer. Wie verändert sich die Drehzahl des Motors bei Variation des Widerstands? Erkläre deine Beobachtung!
- Entferne anschließend das Potentiometer aus der Schaltung

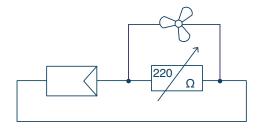
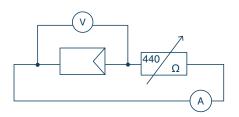
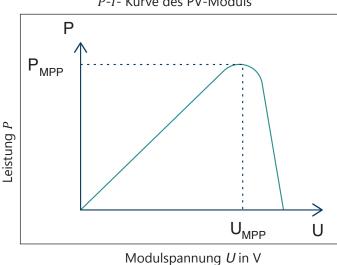



 Abb.: Ein Potentiometer angeschlossen an das PV- Modul. Ein Motor ist zu diesem parallel geschaltet.

Teilversuch 02

Aufnahme des MPP

- Baue die Schaltung in Abbildung 3 nach. Im Versuch beträgt der zu variierende Widerstandsbereich 0Ω → 440Ω. Verbinde dafür die zwei vorhandenen Potentiometer auf eine passende Weise
- Mit zwei Multimetern gleichzeitig im Einsatz, sind nun die Stromstärke im Stromkreis und die Klemmenspannung am Modul zu messen. Notiere dir die Werte in Tabelle 1. Nehme mindestens zehn Messpaare auf:
- Das erste Wertepaar, das du messen solltest, ist unter der Leerlaufspannung $U_{\scriptscriptstyle \parallel}$ bei offenem Stromkreis
- Schließe das Potentiometer wieder an und nehme Wertepaare unter Variation des Widerstand von 0Ω bis zu dem 440Ω Anschlag auf. Nehme vor allem viele Messwerte im Bereich auf, in dem der Strom einbricht!
- Als <u>letztes</u> Wertepaar nimmst du Strom und Spannung unter dem Kurzschluss-Strom $I_{\rm ks}$ auf (geschlossener Stromkreis und $R \to 0$)


3. Abb.: Schaltplan zur Messung des MPP des Moduls.

Auswertung

U-I-Charakteristik und U-P-Charakteristik

Die Aufgabe ist nun die aufgenommenen Wertepaare in einem U-I- Diagramm und in einem U-P-Diagramm darzustellen. Für das U-P- Diagramm muss also die I-Spalte in Tabelle 1 durch Multiplikation mit den Spannungswerten zu einer neuen P-Spalte in Tabelle 2 umgewandelt werden. Qualitativ sollten die Linien wie in Abbildungen 4 und 5 ausschauen. Welchen besonderen Werten entsprechen die Schnittpunkte der U-I- Kurve mit den Koordinatenachsen?

U-I- Kurve des PV-Moduls Stromstärke / U Modulspannung U in V

P-I- Kurve des PV-Moduls

Schnittpunkt mit der *U*-Achse im *U-I-*Diagramm:

Schnittpunkt mit der *I*-Achse im *U-I*-Diagramm:

Name:	Datum:
Namo.	

Tabelle 1

Wertepaare von Stromstärke & Spannung unter Variation des Widerstands

Spannung in V	Strom in mA (I)	Spannung in V (II)	Strom in mA (II)	Spannung in V	Strom in mA (III)

Tabelle 2

Wertepaare von Leistung & Spannung unter Variation des Widerstands

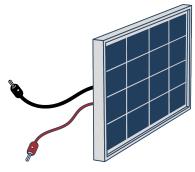
Spannung in V	Leistung in mW (I)	Spannung in V (II)	Leistung in mW (II)	Spannung in V (III)	Leistung in mW (III)

Name:	Datum:

04 Experiment: Wirkungsgrad

Lernziel

Durch Bestimmen charakteristischer Größen wird der maximale Wirkungsgrad des PV-Moduls bestimmt. Darüber hinaus wird das Verhalten des Wirkungsgrad auf eine Temperaturänderung des Moduls untersucht.


Kurzbeschreibung

Mit einem Geodreieck, einem Multi- und Luxmeter werden charakteristische Größen des Moduls gemessen und der Wirkungsgrad mittels genäherter Formeln bestimmt. Das Modul wird mit einem Fön erhitzt bzw. indem man es für fünf Minuten in die Tiefkühltruhe (z.B. der Schulmensa) legt, gekühlt. Die Leistungsänderung aufgrund der unterschiedlichen Modultemperatur wird gemessen.

Vorüberlegungen

Der Wirkungsgrad ist eine entscheidende Größe jeder Energiewandlungstechnik wie auch in der Photovoltaik. Von ihm hängt es ab, ob sich eine Technik etablieren kann. An seiner Optimierung arbeiten die Wissenschaft, als auch die Industrie intensiv.

- Wie unterscheiden sich Leerlaufspannung U_{\parallel} und Kurzschluss-Strom $I_{\rm ks}$ hinsichtlich Stromfluss?
- Was denkst du, passiert mit der Leistungsabgabe einer Solarzelle, wenn sie wärmer wird? Deine Vermutung kannst du später bestätigen oder korrigieren

1 Abb. Zu benutzendes Modul

• Mess-Tipp: Ist das PV-Modul direkt mit dem Multimeter verbunden, lassen sich $U_{\scriptscriptstyle \parallel}$ und $I_{\scriptscriptstyle \rm ks}$ messen, ohne die Verschaltung des Multimeters zu verändern, indem das Drehrad des Multimeters einfach auf die Stellung "Volt" bzw. "Ampere" gebracht wird

Abschätzung des MPP

Eine Solarzelle hat einen optimalen Betriebspunkt, d.h. es existiert ein Widerstand, den man an ein Modul anschließen kann, unter dem das Produkt aus Spannung und Strom am größten ist. Wie dieser MPP ermittelt wird, ist Gegenstand des Versuchs Nr. 3.

(1)

Aus der genauen Form des MPP-Graphen lässt sich folgende Formel für eine Abschätzung der maximalen Leistung begründen:

$$P_{\text{MPP}} \approx I_{\text{ks}} \cdot U_{\text{II}} \cdot 0.75$$

Dabei bezeichnet man den Faktor 0,75 als **Füllfaktor**, dieser variiert prinzipiell zwischen 0,7 und 0,9.

- Stecke das Modul in die Grundplatte und schalte die Halogenlampe an
- Messe den Kurzschluss-Strom des Moduls und dessen Leerlaufspannung
- Berechne daraus den geschätzten MPP

Konzept 01

Wirkungsgrad

Der Wirkungsgrad eines physikalischen Systems ist definiert über

"Ich speise das System mit der Leistung $P_{\text{in'}}$, wie viel Leistung kommt am anderen Ende raus?"

$$\eta = rac{P_{
m out}}{P_{
m in}}$$
 raus?"

P bezeichnet dabei die Leistung ("Power"), also wie viel Joule Energie pro einer Sekunde fließt. Energie wiederum ist eine Zahl, die misst, wie wahrscheinlich jegliche "Änderung" in einem System ist.

Eine PV-Zelle wandelt Lichtenergie in elektrische Energie um.

Der Wirkungsgrad ist also das Verhältnis aus der umgesetzten elektrischen Leistung und der auf das Modul einfallenden Lichtleistung. Aus der allgemeinen Formel (2) folgt also folgende für PV-Module spezifische Formel:

$$\eta = \frac{P_{\rm el}}{P_{\rm Licht}} \tag{3}$$

Für $P_{\rm el}$ lässt sich aber $P_{\rm MPP}$ bestimmen (z.B. aus Teilversuch 1) einsetzen. Eine typische Vorgehensweise in der Astrophysik, die wir hier anwenden können, ist es, die **Bestrahlungsstärke** Φ in $\frac{\rm Watt}{\rm m^2}$ zu messen. Dann folgt mit der **bestrahlen Fläche** A in $\rm m^2$ die Lichtleistung:

$$P_{\mathrm{Licht}} = \phi \cdot A_{\mathrm{PV-Modul}}$$
 (4)

Name:	Datum:	
	_	

Konzept 02

Das Luxmeter

Mit einem Luxmeter kann man die sogenannte **Beleuchtungsstärke** Φ_{ν} messen, das ist wie hell die einfallende Strahlung für das menschliche Auge erscheint. Ihre Einheit ist "Lumen pro Quadratmeter", was man wiederum als "Lux" definiert – daher der Name "Luxmeter".

Lux: Das, was ein Luxmeter misst
$$1 \ lx = 1 \frac{lm}{m^2} \qquad \qquad \text{Lumen, Einheit für den Lichtstrom} \tag{5}$$

Die Beleuchtungsstärke $\Phi_{\rm V}$ in Lux ist nicht dasselbe wie die physikalische Bestrahlungsstärke Φ in Watt pro Quadratmeter aus Gleichung (4). Es muss nämlich noch mit dem sogenannten Strahlungsäquivalent K umgerechnet werden:

$$\phi \left[\frac{\mathbf{W}}{\mathbf{m}^2} \right] = \phi_{\mathbf{V}} \left[\frac{\mathbf{lm}}{\mathbf{m}^2} \right] \cdot \frac{1}{K} \left[\frac{\mathbf{W}}{\mathbf{lm}} \right] \tag{6}$$

K ist dabei eine relativ komplizierte Größe und kann nur in Spezialfällen einfach bestimmt werden. Einer dieser Fälle ist unserer Sonne, da sie fast wie ein perfekter "Schwarzkörper" ausstrahlt. Es gilt:

$$K_{\mathrm{Sonne}} pprox 93 rac{\mathrm{lm}}{\mathrm{W}}$$
 (7)

K variiert über den Tag und hängt auch von der Wolkendicke ab. Dies ignorieren wir hier, da wir nur an einer Abschätzung interessiert sind.

Abschätzung des Wirkungsgrads

Abscriatzung des wirkungsgrads					
Für diesen Teilversuch mus einem Luxmeter und einem			tovoltaik-Modul,		
lst es ein wolkiger oder sor	ıniger Tag?	Wolkig	Sonnig		
malen Spannung (S Lichtverhältnisse ni • Messe nun den Ku bei der der größte S Achtung: An einer derem die "A"-Buch hen! Tipp: An einem sor • Sobald die die opti die Neigung unbed	Siehe Infoblatt am icht gut genug, un irzschluss-Strom i Strom fließt. In sehr hellen Tag, hae anstatt der "minigen Tag, kanns male Neigung gefingt bei! In Leerlaufspannur em du das Luxme er zurück an die G	n Modulrücken den Versucund finde die und finde die nA"-Buchse bet du dich amfunden hast, ang mit dem Neter an das Marundplatte	en) entsprechen. Is ch durchzuführen e Neigung des Mo ie richtige Größend benutzen. Ansonst Schattenwurf von notiere dir den Stillultimeter und die Multimeter und die Modul anlegst. Trag	t dies nicht duls gegen ordnung ein en kann da Objekten u romwert in Beleuchtung t die Werte	
Φ _v in lx	U _∥ in V		$I_{\rm ks}$ in A		≈ P _{MPP} in W
 Berechne nun anale Berechne mithilfe F ke Φ aus deinem W 	Formel (6) und der	m Sonnen-St	trahlungsäquivalen	•	elle 1 ein) die Bestrahlungsstär-

Name:	Datum:	
	wie möglich die Fläche des Moduls, die mit Solarzellen bedeckt ist. Notiere d 4 _{PV-Modul} . Nun kannst du über Formeln (3) und (4) den Wirkungsgrad berechne /ert?	
	$\eta \approx$	(8)

Einfluss der Temperatur auf den Wirkungsgrad

- Stecke das PV-Modul in die Grundplatte und bringe die Lampe an
- Verbinde ein Multimeter und messe den Kurzschluss-Strom und die Leerlaufspannung. Das ist die Referenzmessung bei Raumtemperatur. Berechnet den geschätzten MPP und tragt alle Werte in Tabelle 2 ein
- Mache analog eine zweite Referenzmessung bei Raumtemperatur, diesmal mit eingeschaltetem Fön: So lassen sich systematische Fehler umgehen, sollte die Leistung der Lampe bei Einschalten des Föns einbrechen, was z.B. passieren kann, wenn Lampe und Fön durch eine Mehrfachsteckdose parallel geschalten sind.
- Schalte die Lampe aus

Tabelle 2

MPP-Referenzmessung bei Raumtemperatur mit und ohne Fön

	$U_{_{ }}$ in V	I _{ks} in mA	$\approx P_{\text{MPP}}$ in W
Mit Fön			
Ohne Fön			

- Lege nun das Modul für fünf Minuten in die Tiefkühltruhe (z.B. der Schulmensa). Nachdem die Zeit vergangen ist, bringt das Modul so schnell wie möglich zurück zu seiner Position an der Grundplatte
- Schalte die Lampe an und messe den Kurzschluss-Strom und Leerlaufspannung. Berechne daraus den geschätzten MPP nach fünf Minuten kühlen. Schalte die Lampe aus und trage in Tabelle 3 ein

Tabelle 3

Verhalten des MPP bei Temperaturänderung

	$U_{_{\parallel}}$ in V	$I_{ m ks}$ in mA	≈ P _{MPP} in W	Referenz-MPP in W aus der Tabelle 2
Nach 5 min. Tiefkühltruhe				Bei Raumtemperatur:
Nach 5 min. Föhnen				Bei Raumtemperatur und eingeschaltetem Fön:

- · Lass nun das Modul sich komplett auf Raumtemperatur erwärmen
- · Schalte erst dann die Lampe ein und föhne das Modul für fünf Minuten
- Messe den Kurzschluss-Strom und die Leerlaufspannung nach den fünf Minuten. Berechne den geschätzten MPP und trage in Tabelle 3 ein

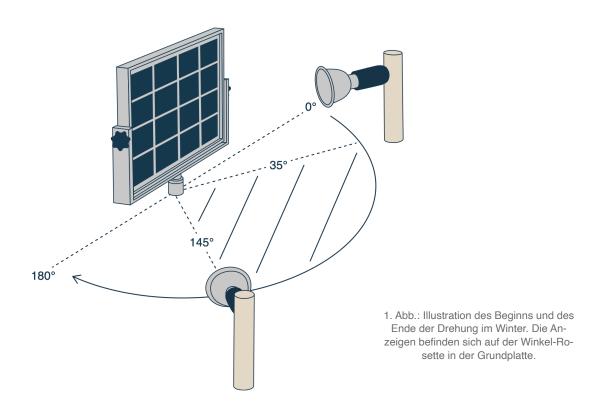
Tabelle 4

In welcher Jahreszeit gewinnt man die meiste Energie?

Beantworte folgende Fragen:

- a) Sinkt oder steigt P_{MPP} bei Erwärmung bzw. Kühlung im Vergleich zum Referenzwert bei ausgeschaltetem bzw. eingeschaltetem Fön? Um wie viel Prozent jeweils?
- b) In welcher Jahreszeit wird die meiste Energie mit Photovoltaik gewonnen? Stimmt das mit deinen Feststellun gen überein, bei welcher Temperatur die Leistung am größten ist?

c)	Vergleiche den Kurzschluss-Strom unter Erwärmung in Tabelle 3 mit dem Kurzschluss-Strom in der Referenz tabelle 2. Fällt dir etwas auf, was dich verwundert?		
_			


Name:	Datum:	

05 Zusatz 1: Realitätsgetreue Einstellung des Moduls

Einstellung 01

Umlaufwinkel

Mit dem Umlaufwinkel β wird der Verlauf der Sonne über den Tag von Ost nach West abgebildet. Auf der Winkel-Rosette in der Grundplatte sind Sonnenaufgang- und Untergang für verschiedene Jahreszeiten (Winter, Frühling/Herbst, Sommer) angezeigt. Die Anzeigen markieren den Start- und Endwinkel für die Drehung der Lampe um das Modul.

Einstellung 02

Bedeckung

Vor jedem Sonnenaufgang- und Untergang befinden sich drei Kreise, die dazu auffordern die Lampe zu 1/3 (hellgrau), 2/3 (grau) und ganz (schwarz) zu bedecken, sobald diese Punkte erreicht werden. Zur Bedeckung lässt sich die kühle LED-Lampe mit bspw. Haftnotizen abkleben.

Einstellung 03

Neigungswinkel

Der Winkel zwischen Lichtstrahlen und einem PV-Modul beträgt

 γ + α , wo γ die Neigung des Moduls gegenüber der Horizontalen ist und α der (zeitabhängige) Höhenwinkel der Sonne. Sei nun das Modul als Beispiel um 30° geneigt. Diese Neigung muss korrigiert werden. Die Korrektur ist unterschiedlich je nach Jahreszeit (Frühling/Herbst, Sommer oder Winter) und beträgt gerade $\alpha_{\rm max}$. Das ist die maximale Höhe der Sonne in der jeweiligen Jahreszeit. Der Sonnenhöchststand verändert sich prinzipiell von Tag zu Tag und ist nicht nur von der Jahreszeit abhängig. Wir geben den Korrekturwinkel $\alpha_{\rm max}$ hier stellvertretend für die Jahreszeiten Frühling/Herbst, Sommer und Winter durch den Wert der Tag- und Nachtgleiche, Sommersonnenwende und Wintersonnenwende an.

Beispiel: Es soll die Leistungskurve zur Sommerzeit simuliert werden. Die Anfangsneigung beträgt 30°. Der maximale Höhenwinkel beträgt 65°. Also muss die neue Neigung 30°+65° = 95° betragen.

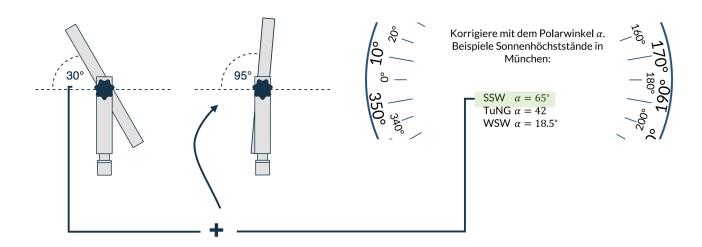


 Abb.: Korrektur der Neigung des PV-Moduls um die Situation im Sommer zum Sonnenhöchststand realitätstreuer darzustellen.

3. Abb.: Ausschnitt der an der Modulseite integrierten Winkelschablone. Man für die Sommerzeit (21.06 Sommersonnenwende) den Korrekturwinkel von 65° ablesen.

Dies ist eine Näherung. Im Prinzip müsste man für jeden Umlaufwinkel die Neigung korrigieren. Aus pädagogischen Gründen passen wir jedoch nur einmal für alle Umlaufwinkel die Neigung an den Sonnenhöchststand an.

Einstellung 04

Tipp

Bei höheren Neigungen (ab 50°) die dursichtige Makrolonplatte mit zwei schwarzen DIN-A4-Blättern verdecken. Das blockiert das von der Platte reflektierte Licht, welches zu Fehlmessungen führen kann.

Name:	Datum:	

06 Zusatz 2: Verschaltung von PV-Modulen einer Anlage

Lernziel

Es soll die optimale Verschaltung von PV-Modulen einer realen PV-Anlage abgeleitet werden, basierend auf Faktoren wie möglichen Schattenwurf, Energieverlust und Toleranzgrenzen elektronischer Geräte.

Arbeitsauftrag

Vergleiche quantitativ und qualitativ den Effekt von Beschattung einer parallelen Verschaltung und einer Reihenschaltung von PV-Modulen. Wenn du eine PV-Anlage für das Schuldach auslegen könntest, welche Verschaltung würdest du basierend auf deinen Erkenntnissen aus den Experimenten wählen? Vergleiche dafür vor allem Tabellen 6 und 3. Wie könnte man beispielhaft eine Anlage für eine optimale Energiegewinnung verschalten?

Tipp 1 Bei dem Transport von elektrischer Energie werden in den allermeisten Fällen sogenannte ohm'sche Verluste auftreten. Diese gehen quadratisch mit der Stromstärke und linear mit der Spannung einher, das heißt $\Delta E \propto U$ und $\Delta E \propto I^2$.

Tipp 2 PV-Anlagen speisen meist in das Energienetz ein. Dieses arbeitet mit 230V Wechselspannung. Eine PV-Anlage liefert jedoch Gleichspannung. Ein zentrales Element jeder PV-Anlage ist daher der *Wechselrichter*, der die Aufgabe hat, den Gleichstrom aus der PV- Anlage in Wechselstrom umzuwandeln, sodass dieser in das Energienetz eingespeist werden kann. Nehme an, dass ein sogenannter *trafoloser* Wechselrichter von der Anlage nicht über 800V DC Eingangsspannung erhalten darf, ansonsten geht er kaputt. Am besten arbeitet er mit Spannungen über 300V und braucht mindestens 60V um zu funktionieren. Eine einzelne PV-Zelle liefert ca. 0,6V und ein großes PV-Modul besitzt 60 PV-Zellen.

Arbeitsheft – Experimente an PV-Zellen