

Workbook

Electric circuits & solar energy

in elementary school with the electric cube

Grade 3/4

Experiment kit

We always strive to check our lessons thoroughly for possible errors before publication. However, if you, dear user, notice something, we would be grateful if you could send us a message at fehlerteufel@solarbildung.org.

Electric cube designed by Lothar Leuchter (master electrician & master designer) Accompanying material created by Alexandra Müller (elementary school teacher)

First Edition, October 2025

Design & Layout: Carina Lützenburger

© Solar for Schools Bildung, 2025 www.solarbildung.org Solar for Schools Bildung gGmbH Steinstr. 39, Rgb. rechts D-81667 Munich

hilfe@solarbildung.org

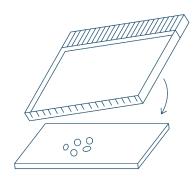
Legal notice:

All content in this publication, including text, images, and graphics, is protected by copyright and may not be reproduced or distributed without the written permission of the publisher (except for educational purposes). This publication is intended for educational purposes only, and the publisher does not guarantee its complete accuracy.

Electric circuits & solar energy

in elementary school with the electric cube

Content	
FB 1 Making electrical charge visible	4
FB 2 We make the lamp light up	6
FB 3 We install a switch	7
FB 4 We light up two lamps	8
FB 5 Which materials conduct electricity?	10
FB 6.1 Discovering solar energy	11
FB 6.2 Discovering solar energy	13


Name:	Date:	

FB 1 Making electrical charge visible

Confetti Fleas

You will need:

- · Paper confetti
- CD case
- · Dish towel / faux fur

Here's how it works:

- 1. Use a hole punch to punch 5 confetti "fleas" out of the paper.
- 2. Scatter the confetti "fleas" on your table.
- 3. Guess: What happens when you rub the CD case with the cloth? CD case rubbed with the cloth over the confetti?
- 4. Place the CD case on the table and rub it several times with the cloth or the art felt.
- 5. Now hold it briefly over the confetti.

My assumption

That's what I observed

Insight

Underline the correct words in brackets

Plastic objects (cannot/can) be electrically charged.

An invisible force acts around electrically (charged/discharged) objects.

Pieces of paper (can/cannot) be attracted by this force.

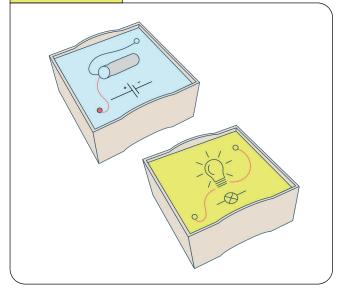
Unequal (charges/objects) attract each other and equal (charges/objects) repel each other.

to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
to explain your observations with the help of the first experiment.						
			20 Object 1 (1) 1 (1)	af the afternation of	arimant	
	to explain y	our observatior	is with the neip	of the first exp	ennent.	
	to explain y	our observatior	is with the neip	of the first exp	eninent.	
	to explain y	our observatior	is with the heip	of the first exp	eriment.	
	to explain y	our observation	is with the heip	of the first exp	eninent.	
	to explain y	our observatior	is with the heip	or the first exp	eninent.	
	to explain y	our observatior	is with the heip	of the first exp	eninent.	
	to explain y	our observation	is with the heip	of the first exp	eninent.	
	to explain y	our observatior	is with the heip	or the first exp	eninent.	
	to explain y	our observatior	is with the help	of the first exp	eninent.	
	to explain y	our observation	is with the help	of the first exp	eninent.	
	to explain y	our observation	is with the help	or the first exp	eninent.	

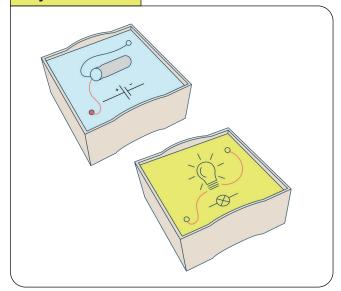
Name:	Date:
-	

FB 2 We make the lamp light up

Exercise 1


How do you need to connect the two boxes to each other so that the lamp lights up?

First draw your guess and then try it out.


You will need

- ____ Cable
- 1 light blue module
- 1 yellow module

My guess

My Solution

Excersice 2

Draw a suitable circuit diagram for your solution.

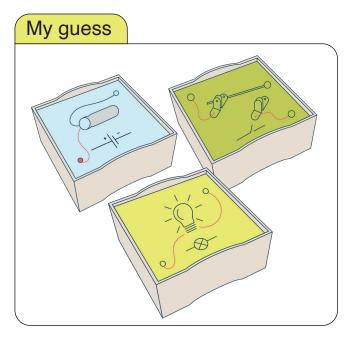
Realisation

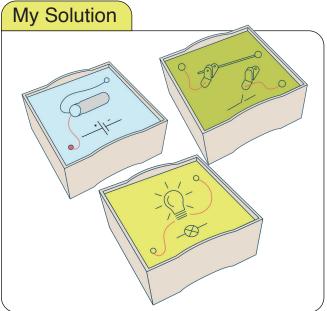
Electrons can only move in an

The movement of electrons

generates _

in the incandescent lamp and


FB 3 We are installing a switch


Exercise 1

How do you connect the boxes so that you can turn the lamp on and off with the switch? First draw your guess and then try it out.

You will need

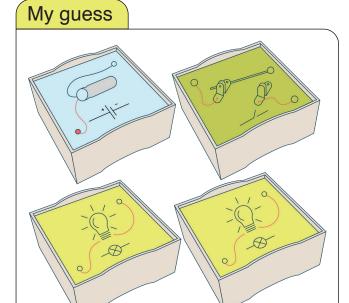
- ____ Kabel
- 1 hellblaues Modul
- · 1 gelbes Modul
- 1 grünes Modul

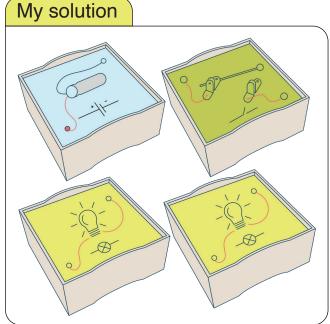
Exersice 2

Draw a circuit diagram matching your solution.

Realisation	
You can use the switch	_
to selectively	
and	
The lamp is now	

Name:	Date:	


FB 4 We light up two lamps


Exercise 1

How do you have to connect the boxes so that you can switch two lamps on and off with the switch? First draw your guess and then try it out.

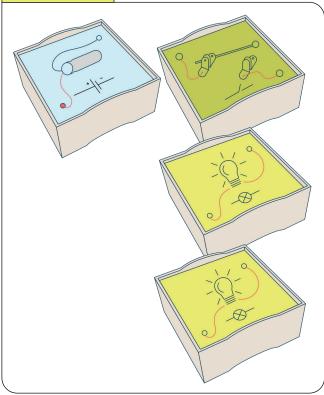
Du brauchst

- ____ Cable
- 1 light blue module
- 1 green module
- 2 yellow modules

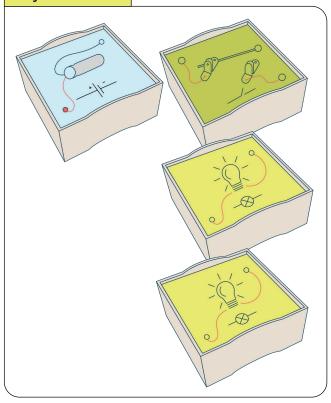
Exercise 2

Draw a suitable circuit diagram for your solution.

Realisation	
The two lam	ps are switched
They both lig	ght up
	·


Exercise 3

How do you connect the boxes so that one lamp continues to light up when the other lamp is unplugged?


Du brauchst

- ____ Cable
- 1 green module
- 1 light blue module
- 2 yellow modules

My solution

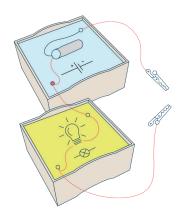
Exercise 4

Draw a circuit diagram matching your solution

Realisation

The two lamps are switched

They both light up



Name:	Date:	
	_	

FB 5 Which materials conduct electricity?

Exercise 1

Build an electric circuit with the boxes and draw the cables in the experimental setup.

You will need

- 1 cable with plug
- · 2 cables with crocodile clips
- 1 light blue module
- 1 yellow module

Draw a circuit diagram matching your solution

Exercise 2

Guess which substances conduct electricity. Then check your guess, by building the different substances into your circuit.

Material	Assumption	Conducts electricity	doesn't conduct electricity
Wood			
Plastic			
Fabric			
Rubber			
Aluminium			
Copper			
Iron			
Graphit (pencil lead)			
Glass			
Coal			
Ceramics			

FB 6.1 We are discovering Solar energy

Exercise 1	_		
	\vdash \lor \triangleright	rcice	. 1

When does a solar panel generate little or a lot of electricity? Draw different positions of the solar panel, describe the position, and guess how many lights will be lit.

Position	Assumption	Measurement result

Name:	Date:	
Exercise 2 What conclusions can you draw Exercise 3 In addition to location, what env	he amount of electricity (generated?

FB 6.2 Discovering solar energy

Exercise 1

When does a solar panel generate little or a lot of electricity? Describe the position and guess how many lights will be lit.

Position	Assumption	Measurement result

Name:		Date:		
		0000	0000	
Exercise 2 What conclusions can you draw	v from the measurements?			
Exercise 3 n addition to location, what env	vironmental factors influence	the amount of electricity (generated?	